OAR Box 1874

Prepped by Keeia Richards

Document Number: 50) 11-1-14

Docket Number:

A-2000-32

Printed 12/18/2008 2:35:42 PM

Sheet 50 of 73

FINAL TEST REPORT

MERCURY FUME SCRUBBER EMISSION EVALUATION

prepared for

WESTLAKE CA & O CORPORATION CALVERT CITY, KENTUCKY

by

FBT ENGINEERING, INC. 6860 Stonepoint Court Paducah, Kentucky 42003 (502) 898-8782

This Battochalk

Prepared by: Chris Gottschalk Project Manager

í.

1

.

Dandklet

Reviewed by: David K. Wetmore Director, Environmental Services

December 15, 1998

P.2

A-2000-32 II-I-14

JUL 3 0 2002

FINAL REPORT MERCURY FUME SCRUBBER EMISSION EVALUATION WESTLAKE CA & O CORPORATION CALVERT CITY, KENTUCKY

|_|

IV

TABLE OF CONTENTS

1.0 2.0 3.0 4.0 5.0 Α Sample Calculations Sampling and Laboratory Procedures В С Field Data Sheets Sampling Site Data D Calibration Data E Analytical Data F G Process Data Η Mercury Sampling Data and Results 2

1,

PAGE

Westlake CA&O

Terry M. Stapleton Westlake CA&O Corporation 2468 Industrial Parkway Calvert City, KY 42029 (270) 395-3805

July 8, 1999

Ms. Kavita Bhatia EC/R Incorporated 2327 Englert Drive Suite 100 Durham, NC 27713

Dear Ms. Bhatia,

Enclosed is the stack test reports you requested. The Mercury Fume Scrubber (End box ventilation scrubber) was tested in December 1998. The Hydrogen Vent (or No. 4 Boiler) was tested in 1993. The tests are coming in separate packages. If you need any additional information please call.

Sincerely,

Penny M. Staplet

Terry M. Stapleton Chlor-Alkali Technical Manager

FINAL TEST REPORT MERCURY FUME SCRUBBER EMISSION EVALUATION WESTLAKE CA & O CORPORATION CALVERT CITY, KENTUCKY

1.0 INTRODUCTION

FBT Engineering, Inc. (FBT), was retained by Westlake CA & O Corporation to perform an evaluation of mercury (Hg) emissions on the mercury fume scrubber at their Calvert City. Kentucky, chlor-alkali plant. This scrubber controls Hg emissions from the chlorine cells' end box ventilation system. The purpose of the evaluation was to demonstrate that the Hg emission contribution of the fume scrubber exhaust did not cause the plant's total Hg emissions to exceed the applicable limit. This requirement is specified in Title 40 Part 61, Subpart E of the National Emission Standards for Hazardous Air Pollutants (NESHAP).

The FBT test team consisted of Chris Gottschalk and James Roberts. Bob Gold and Will Woods, Westlake Monomers, coordinated testing with plant operations. The test was observed by three representatives of the Kentucky Division of Air Quality. They were Gerald Slucher, Chief of Source Test Section. Stan Cook and Kevin Usher, Environmental Inspectors, Paducah Regional Office.

2.0 SUMMARY OF RESULTS

12

The average mercury emission rate from the mercury fume scrubber was 8.65 grams per day. Mercury emission results and stack gas conditions are summarized in Table 2.1. Scrubber process operating parameters, including facility production rate, are summarized in Table 2.2.

Process rate for the chlor-akali plant is defined as kilo amperes of electrical current to the cells. This current is proportional to the chlorine gas produced. The current to the cells during sampling of the Hg fume scrubber stack was 303 kilo amperes. A current of 303 kilo amperes is equal to a chlorine gas production rate of 370 tons per day.

Test data and results are presented in Appendices A through H. Sample calculations are presented in Appendix A. Sampling and laboratory procedures are described in Appendix B. Field data sheets are presented in Appendix C. Sampling site data is given in Appendix D. Calibration data is contained in Appendix E. Analytical laboratory data and results are presented in Appendix F. Process operating and rate data during sampling is contained in Appendix G. Hg sampling data and results are given in Appendix H.

DF

TABLE 2-1 RESULTS SUMMARY MERCURY FUME SCRUBBER WESTLAKE CA & O CORPORATION CALVERT CITY, KY

P.6

STACK CONDITIONS AND EMISSIONS:

DATE:	12/15/98	12/15/98	12/15/98	
TIME:	0847-1055 hrs	1148-1354 hrs	1454-1700 hrs	AVERAGES
RUN #:	1	2	3	
Avg Gas Temp, °F	88	92	95	91
H ₂ O, %	4.6	4.8	5.2	4.9
Gas Velocity, fps	40.0	41.1	41.8	40.9
Gas Flow, acfm	2,563	2,634	2,680	2,626
Gas Flow, dscfm	2,364	2,409	2,425	2,399
Mercury Emissions:				
grams/hour	0.371	0.366	0.344	0.361
grams/day	8.91	8.79	8.26	8.65
% Isokinetic	97	98	99	

KEY:

r

h

fps = feet per second

acfm = actual cubic feet per minute

dscfm = dry standard cubic feet per minute

TABLE 2-2 OPERATING CONDITIONS MERCURY FUME SCRUBBER WESTLAKE CA & O CORPORATION CALVERT CITY, KY

	рН	ORP	Water Flow	Inlet Air Temp
\ ·		(mv)	(gpm)	(°F)
PARAMETER	8.9	549.2	3.8	98.2

Notes:

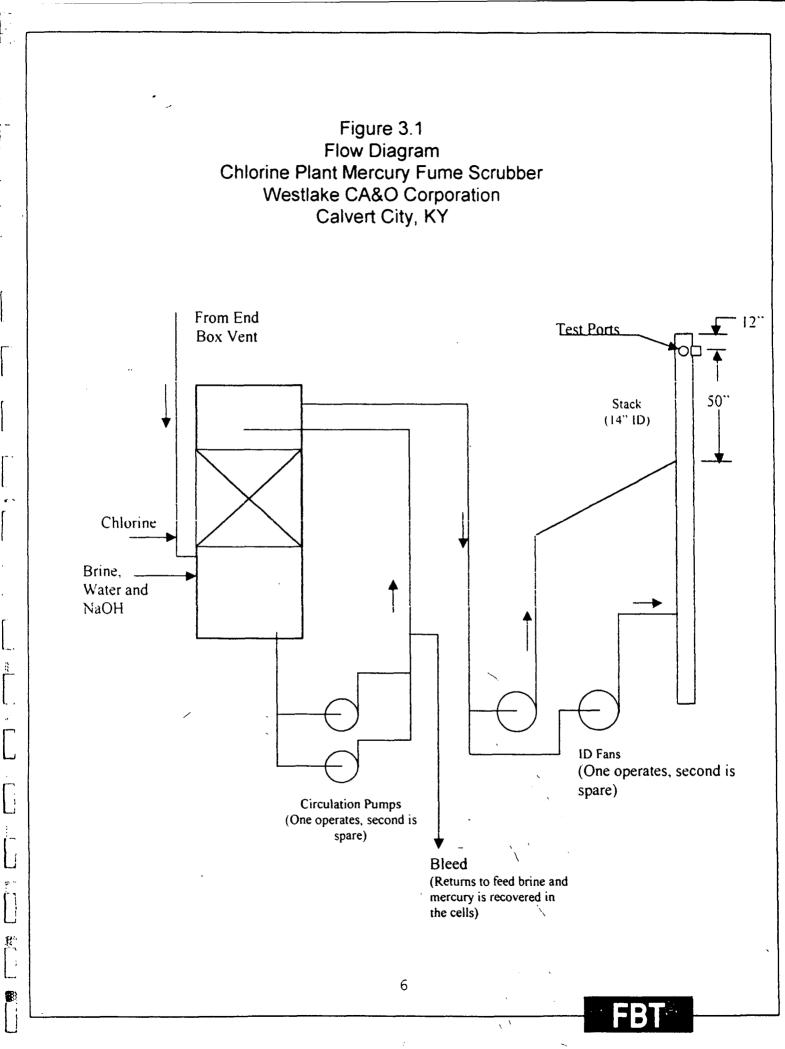
1. These are average operating conditions during six hours of stack sampling. See Appendix G.

2. Process rate of Chlor Akali Plant during sampling was 303 kilo ampheres (equivalent to 370 tons chlorine production per day).

KEY:

ORP = oxidation reduction potential mv = milivolts gpm = gallons per minute

4


3.0 PROCESS DESCRIPTION

ł

Figure 3.1 is a flow diagram of the chlor-alkali plant's end box ventilation system Hg fume scrubber. The scrubber is a packed tower design and the scrubbing liquor is a sodium hypochlorite solution. Sodium hypochlorite combines with Hg to form mercuric chloride. A bleed stream of the circulating liquor removes Hg from the scrubbing process and returns it to the feed brine going to the cells. Chlorine and sodium hydroxide are added and react to form the makeup sodium hypochlorite. The chlor-alkali plant and the Hg fume scrubber operate continuously. 24 hours per day, seven days per week.

5

P 7

í

4.0 **TEST METHODS**

The sampling and analytical procedures used during this test were United States Environmental Protection Agency (USEPA) Reference Methods described in the *Code of Federal Regulations* 40 Part 60 Appendix A and Part 61 Appendix B. Following is a list of these Methods. Sampling, analytical, and laboratory procedures are described in more detail in Appendix B.

- <u>Measurement Sites (Method 1)</u> The location of measurement sites and the number of sample points were determined as specified in USEPA Reference Method 1, "Sample and Velocity Traverses for Stationary Sources."
- <u>Velocity and Volumetric Flow Rates (Method 2)</u>
 The duct/stack gas velocities and volumetric flow rates were determined using USEPA
 <u>Reference Method 2</u>, "Determination of Stack Gas Velocity and Volumetric Flow Rate."
- Dry Molecular Weight (Methods 3)
 Dry molecular weight of the duct/stack gases was determined using USEPA Reference
 Method 3, "Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, and Dry Molecular
 Weight." Grab samples were analyzed for carbon dioxide and oxygen with a Fyirite Gas
 Analyzer for molecular weight determination.
- Moisture (Method 4)

The moisture content of the stack gas was determined using USEPA Reference Method 4, "Determination of Moisture Content in Stack Gases."

Mercury Emissions (Method 101) Mercury emission rate was determined using USEPA Reference Method 101, "Determination of Particulate and Gaseous Mercury Emissions from Chlor-Alkali Plants (Air Streams)."

7

5.0 **APPENDICES**

- A Sample Calculations
- B Sampling and Laboratory Procedures
- C Field Data Sheets
- D Sampling Site Data
- E Calibration Data
- F Analytical Data

G - Process Data

1

[

;

- -

ſ

ġ...

L

Ľ

H Mercury Sampling Data and Results

8

.

' '

APPENDIX A

 $\left[\right]$

2

ŕ

l F

1

£

6

P.11

SAMPLE CALCULATIONS

.

EXAMPLE CALCULATION

;

,

- . 1

.

Ţ

;

·

CLIENT/PROJECT:	Westlake CA & O/461	
PROCESS	Chlor Alkali Plant	
SAMPLE LOCATION: DATE:	Hg Fume Scrubber Stack 12/15/98	
TIME:	0847-1055 hrs	
RUN#:	1	
Ţ	METER CORRECTIONS:	
Vmc = Vm-(Lp-La) x Time	= Vm-(Lp-0.02) x Time =	126.4
Vm(std) = 17.647 x Vmc x l	רַ \$ (Pbar+∆H/13.6)/Tm(°R) =	137.6
	STACK GAS CONDITIONS	
MOISTURE CONCENTRA	TION:	
Vw(scf) = Vwc x 0.04707	/ =	6.68
Bws = Vw(scf)/(Vw(scf)+		0.04
%H ₂ O = Bws x 100 =		4.63
MOLECULAR WEIGHT:		
Md = 0.44 x (%CO2)+0.3	32 x (%O2)+0.28 x (%N2+%CO) =	29.0
Ms = Md x (1-Bws)+(18.	0 x Bws) =	28.5
STACK GAS VELOCITY:		
Vs(fps) = 85.49 x Cp x A	vg(∆P ^{0 5}) x [Ts(*R)/(Ps x Ms)] ^{0 5} ≈	39.9
STACK GAS VOLUMETRI	C FLOW RATE:	
Qa(acfm) = Vs x 60 x As	(ft²) =	2,56
Qstd(dscfm) = Qa x 17.6	i47 x (1-%H ₂ O) x Ps/Ts(°R) =	2,36
ISOKINETIC SAMPLING R		
%I = 0.0945 x Ts(°R) x V	/m(std)/[Ps x Vs x An x Time x (1-Bws)] =	97.1
	EMISSIONS CALCULATIONS:	
Hg CONCENTRATION:		
Cs₁ (µg Hg/sample) ≃ Hg in	probe rinse and impinger sample	360.
Cs(lb/dscf) = 2.205 x 10-9 x	κ Cs₁ (μġ Hg/mi sample) / Vms≔	5.7678E-0

 Cs(lb/dscf) = 2.205 x 10-9 x Cs, (µg Hg/ml sample) / Vms=
 5.7678E-09

 Hg EMISSION RATE:
 Er(lb/hr) = Cs(lb/dscf) x Qstd x 60 =
 0.0008183

 Er(g/day) = Er(lb/hr) x 24/0.002205
 8.906

APPENDIX B

2

<u>, [_</u>]

P.13

SAMPLING AND LABORATORY PROCEDURES

APPENDIX B SAMPLING AND LABORATORY PROCEDURES

Sampling and analytical procedures used during this test were USEPA Reference Methods 1, 2, 3, 4, and 101. These methods were published in the *Code of Federal Regulations 40 Part 60*, Appendix A, and *Part 61*, Appendix B, Revised July 1, 1998. Following is a summary description of these procedures:

B.1 Measurement Sites (Method 1)

The location of measurement sites and the number of sample points were determined as specified in USEPA Reference Method 1, "Sample and Velocity Traverses for Stationary Sources."

Method 1 recommends that sampling sites be located in straight runs of duct or stack eight diameters downstream and two diameters upstream from flow disturbances. As a minimum sampling sites may be located two diameters downstream and one half diameter upstream from disturbances. The mercury fume scrubber stack had a straight run of 4.5 diameters. Thus, two sample ports were cut 3.6 diameters downstream from the closest disturbance. This left 0.9 diameters from the ports to the stack discharge. The number of traverse points selected was 24, 12 on each of two diameters.

B.2 <u>Velocity and Volumetric Flow Rates (Method 2)</u>

The duct stack gas velocities and volumetric flow rates were determined using USEPA **Reference Method 2**, "Determination of Stack Gas Velocity and Volumetric Flow Rate." Velocity pressures were measured with "S" type pitot tubes and temperatures with calibrated type "K" thermocouples. Pressure differentials and static pressures were measured with inclined manometers.

B.3 Drv Molecular Weight (Method 3)

The dry molecular weight of the stack gas was determined using USEPA Reference Method 3, "Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, and Dry Molecular Weight." A grab sample of gas was collected and analyzed for oxygen and carbon dioxide during each run with a Fyrite Gas Analyzer.

B.4 Moisture (Method 4)

2

The moisture content of the stack gas was determined using USEPA Reference Method 4, "Determination of Moisture Content in Stack Gases." A time integrated sample of gas was withdrawn during each Method 101 run. Moisture in the gas was condensed in impingers immersed in an ice bath and determined gravimetrically. Residual moisture was then removed in a column containing a known amount of silica gel and determined gravimetrically. Dry gas

volume was measured with a dry gas meter. See Figure B-1.

B.5 Mercury Emissions (Method 101)

;

÷

ALC: NO

Service and

Mercury emission rate was determined using USEPA Reference Method 101, "Determination of Particulate and Gaseous Mercury Emissions from Chlor-Alkali Plants (Air Streams)." Method 101 is a modification of USEPA Reference Method 5, in which the filter is removed and water in the impingers is replaced with 0.1 Molar (M) iodine monochloride to absorb mercury.

A sample of stack gas was withdrawn isokinetically through a heated glass probe and a set of four impingers. The first three impingers each contained 100 ml of 0.1M iodine monochloride (ICI) and the fourth one was empty. The impingers were immersed in an ice bath. Volume of gas sampled was measured with a dry gas meter. A schematic of the sampling train is shown in Figure B-1.

Prior to sampling all glassware, including probe and nozzle were rinsed with 50% nitric acid, tap water, 0.1 M ICl, tap water, and finally deionized distilled water. After each sampling run, the probe and nozzle were rinsed with 100 ml of 0.1 M ICl into a labeled glass container. Impinger contents were recovered into the container with the probe and nozzle rinse. Finally, the probe, nozzle, impingers and connecting glassware were rinsed with 400 ml of deionized water into the same glass container. Mercury concentration of the impinger solution and a blank sample of the 0.1 M ICl were measured by atomic absorption spectrophotometry in the laboratory.

P 15

Γ. . Temperature Stack Sensor Glass /Wall Gooseneck Temperature Sensor Nozzie Heat Traced Glass-lined Probe Acid Trap 10835 2.4698 3 18220 1822 _Type S Pilot Tube lce Water Ł Bath 11 Manometer Vacuum Line Temperature Sensors Impingers Temperature Sensor T) Ľ C Yacuum Geuge Orlfice By-pass Valve Proble Тгар Dry Gas Meter Type S Pitot Tube 11 Air-Tight Pump

: 1

.

Manometer

1

Figure B-1 USEPA Method 101 Mercury Sampling Train.

τ

APPENDIX C

:

;

ľ.

[.

É

| -

FIELD DATA SHEETS

FBT

Client / Cli	City: _:	WESTI a q D.	<u>Iake CA</u> un #: <u>Ume Scru</u> (1000 (1000) (1000) (1000)	30/ 0	City	Ky	e Length /	/ Type: _	<u>+</u>	<u>F</u> G	1955	· · · · ·	
Date: _/	<u> </u>	/ L	П#: <u> </u>		-1 6	NOZZ	le Size:		^	1.74	रु_ैं-ं	513	
Location	i: _	14 1 76	Chior.	ther no	Stack	Meter	r Box #:	Arty	∆H@ :	1+3·	<u>+</u> r	: 16 37	,
Sample	Туре:_//	1-101/1	4 <u>9</u> Oper	rator: <u>C</u>	<u>61,2</u>	_ Assu	med H ₂ O	: 6	_%	T.:			
P	2.01 A	mbient T	emperature:	°F P,	:- 0	🕂 Refei	rence ΔP	·		K-facto	or. 9.	308	
Pretest I	Leak Rate	e: 0,00%	51045	•ha Fil	Iter #:	Com	ments:						
Postest	Leak Rat	le :	ft³ @	ha –	N.A.	_	<u></u>						
			Orsat Lea										
Fyrite Da			Moisture I				erse Schr		<u> </u>				
		. <u></u>	ml H,(· · · · · · · · · · · · · · · · · · ·	g Sil. Gel		<u>136 Ound</u>	A /			1		
	2		<u> </u>	<u> </u>	y 311. Uci			X			1.		
CO; 14		<u></u>			• • • •		(入/			↓ <i>N</i>	rant	• a 1
	of		cord data even	.			$ \longrightarrow$				e * :	t + A.	.a 111 :
	Sample			Pilol #:		TC #'s:			['				Pu
#	Time	Time	Reading	ΔP	$\Delta H(calc)$	∆H(act)	Probe	Stack	Tm In	Tm Out	Filler	Exit	Va
	\square'						1. j. i. i.	5					
AI		0847	345,480	T	5.7	5.7	243	17	34	34	243	35	1
<u> </u>	5	 '		169	5.8	5.8	223	87	39	35	2-45		1
3	10	 '	357.6	,69	5.8	5.8	214	36		35	245	╡━━┻┅┅╍╍	iZ
<u> </u> '	.5	 '	363,70	.66		5.6	225	87	45	37	244		17
<u> </u>	<i>20</i> 25	 '	369.73	,66	_	5,6	227	87	47		247		<u> '</u>
$-\frac{1}{2}$	30	<u> '</u>	38,49	, <u>60</u> ,50		5.1	230	<u>88</u> 88	49	<u>39</u> 41	241.	46	
8	35	'	386.77	,46		4,0	254		54	41		47	
7	40	[-	.40	1	3, 5	1	38.	57	43	233	46	┼╌
10	पर	<u> </u>	396.73	•3)	3.2	3.2	244	39	57			46	+-
11	50		401,425	133	2,9	2,9	243	74	59		236	46	6
12	55	I'	405.91	.33	2.9	2,9	242	82	59	46	236	46	6
31	60	0955	410.4	,31	2.9	29	253	89	49	48.	238		Ċ
2	1.05	<u> </u>	-	1.52	4.5	4,5	251	89	56	48	238	50.	C
	<u>)</u> C	 '	420,125	, 51 .53	4,4	4.3	236	89 89	59		236	51.	C
5	15 Zu	<u> </u>	425.575	. 50	4,3	4.7	232 232	89	60	49	234	51	8.
i G	25	'	436,2	.49	4,7	4,3	229	90	61	51	237	51	8.
$\overline{\mathbf{r}}$	30		441,68	,51	4.5	4,5	233	90	63	52	237	151	8
8	35		447.13	.48	4.2	4.2		90 90	62	53	236		
9	40		452.44	,45	3.9	3.9	229	90	64	53	237	51	1
10	45		458.	.43	3,8	3.8	240	91	64	54	238	52	7
. 11	50	 '	462.685	.36	3.2	3,2	243	90	66	55	239	52	L
12	55		467.32	.35	3.1	3.1	228	90	66	56	239	52	Æ
End	60	1055	471,947	 '	<u> </u>	 '	┟────┘	ļ]	'	 '	 '	 '	_
	<u> </u>	<u> </u>	1 1959'		- 2776 -			L	L				Ŀ
0: <u>120</u> min	V:100.	401 av	rg √∆P: <u>,6959</u>	avg ∆H:_	4.010 T	<u>81.8</u> T	: <u>50</u> ,7 1	Calculated	1 By :	<u>(6</u>	Checked t	Зу:	
									,	5			

۰.

SAMPLE RECOVERY DATA

,

Ĺ

ent: <u>WEST</u>	LAKE (IE S <u>er</u> ub	CA 30 REP TON	VER	PN:		
	tack					
n#:						
	·	· · · · · · · · · · · · · · · · · · ·				
Filter 1	No: <u>// A</u>	Glassward	Set No:	l Samp	le Box No:	ì
		<u>IMI</u>	PINGER DA	ľA		
	G	ravimetric:	Volume	tric:	_	
	11	119	#3	14	#5	Total
Contenix	ice ml ICI	i no ml ICI	in nl Ícl	mT	SG	
	1			1		
Final	634	69Z	595	573	949	
Final Initial	634 562	69Z 659	595 587	573 563	949 425	

Color of Silica Gel: <u>blue</u> Recovered By: <u>JRoberts</u> Date: <u>1215198</u>

					TELD D								P.20
Client /	City:	Westla	ke CAto,							41	61055		
Date: _	12/15	198 Ru	in#:2		' y.	° Nozz	le Size:						
Location	n: _	Hg Fr-	ne Sciribha	r st	adc	Meter	r Box #:	spex	∆H@:	1.79	3 Y		7
Sample	Type:	1-101/L	<u>lý</u> Oper	ator: <u>(</u>	6/JR	Assu	med H,O:	·	%	T.:		•	<u> </u>
			emperature:				-			-		28	
			<u>_ft³@_17</u>				nents:						
Postest	Leak Ral	le : . : 0 2	f ² f ² @_/5	•ha -	N.A.								
			Orsat Lea										
yrite D					tal: 153	Trave	erse Sche	matic:	•				
	r		ml H,()	g Sil. Gel								
				<u>-</u> -									
		Rec	cord data even	I	minutes			Д	cid i	Secil	es dr	geol.	Ext
	Sample	· · · · · · · · · · · · · · · · · · ·				TC #'s:			1				Pump
#	Time	Time	Reading	ΔΡ	∆H(calc)	∆H(act)	Probe	Slack	Tro Io	Tm Out	Filter	Exit	Vac.
				`					1				} 1
B-1	U	1148	רו 2.3 רץ		5.0	5.0	220	93	49	48	237		11.5
2	5		477.96	.59	5,1	5,1	248	93	57	50	235	4)	12
3	10		-	,01		5.3	236	.92	59	50	237	48	12
4	15			,59	5,1	5,1	239	93	6(52	237	52	12
5	20 70		495,62	,59		5,2	229	93	64	54	235		12
6	30		- 507,48	· 58	1	5.1	232	92 92	64 66	56	240. 236	53	12
	25		513,26	· 55			245	93	67	·	238		10
- S	40		518.815	.42	3,7	3.7	255	93	68	58	239	53	8
(3	45		524,055	144	3.5	3.9	229	93	69	59	239	54	8
11	50		529,23	.38	3,4	3,4	242	93	69	59	240	54	7
_12	55		534,13	-41	3.6	3,6	252	93	67	59	241	55	7.5
<u>A (</u>	60	1254	539,137	.67	5, 5 5, 8	5.9	205	92	56	56	240	55	/3
- 7	1:05		545,42	. 66	5. 8 5. 7	5.8 5.7	210	92	57	55	233 243	<u>54</u> 57.	<u>13</u> 13
, Y	15		-	.63	5.5	5,5	230	92	58	54	235	51.	12
5	20		564,17	.61	5,3	5.3	228	52	59	54	246	53	12
ک `	25		570,12	,59	5,1	5,1	232	92	59	54	250	53	12
<u>````</u>	30		576.045	.49		4.3	234	93	61	54	231	54	10
) S	35		581,60	,43	3,8	3.8	251	91	61	54	235	53	8
· 7 · 10	40		586.67	,36 36	3,1	3,1	230	92 91	62 62	54	264 254	53 52	6
10	<u>45</u> 50		<u>591,31</u> 595,875	-36 -30	3.1 7.7	3, 1 2.7	232 234	85	62	54	247	53	65
12	55	· -	600,285	.31	2.8	2.8	230	58	62	54	246	53	6 54
End		1354	604,690										
0: <u>†20</u>	v <u>:131</u>	<u>ארך א</u> avg	ע <u>רי פוור, א</u>	avg ∆H:	4.492 7.	<u>916 T.</u> :	58.0	Calculate	1 By : <u>(</u>	15	Checked E	By :	
											a)		
					<u> </u>						BT		

				NECONID			
			SAMPLE	RECOVERY	Y DATA		
Dai	le: <u>12-15-</u>	<u>98</u>					
Cli	ent: <u>WESTL</u>	AKE	A 30		PN:		
		e scryb Hac K					
	n#: Z						
		. A t A			7		
	l uter !	NA				e Box No:	
	· ·			<u>INGER DAT</u>			
		C	Fravimetric:	Volumet	ric:		
		<i>ii</i> 1	112 100 ML	113 100mc	11-4	#5	Total
	Contents	100 ml ICL	ICL	ICL	MT	56	
	Final	784	712	613	482	921	1
		69Z	678	610	482	897	
	Initial			• • • • • • • • • • • • • • • • • • •			
	Initial Diet	92	34	3	0	24	153
		92		<u></u>	L	24	153
	. Tret	H	RECO	3 VERED SAN	L	24	153
	. Tret	on of Particulat	RECO	vered san N, A.	L	24	153
	. Tret	on of Particular Color o	RECO	<u></u>	<u>APLE</u>	24	
	t	on of Particular Color o	<u>RECO</u> te on Filter: of Silica Gel:	VERED SAN N. A. Dive	<u>APLE</u>	24	153
	t	on of Particular Color o	<u>RECO</u> te on Filter: of Silica Gel: overed By:	VERED SAN N. A. Dive J. Rober		24	153
	t	on of Particular Color o	<u>RECO</u> te on Filter: of Silica Gel: overed By:	VERED SAN N. A. Dive J. Rober		24	153
	t	on of Particular Color o	<u>RECO</u> te on Filter: of Silica Gel: overed By:	VERED SAN N. A. Dive J. Rober		24	153

.

-

.....

-

Ĩ

Ė

.

ľ

Ũ

Ū

Û

				F	IELDI	JATA	SHEE	Г					P.22
Client /	City: (Wis Ha	ke			Prob	e Length	/Type:	4'	' G/a	55		
Date: _	12/15	58 RI	un #:3				•					313	
			125 cribber			Mete	r Box #:	Apax	± ∆H@:	1, 79	<u>3</u> r	: 1.03	5 7
Sample	Type:/	N-101/	49 Oper	rator: <u>C</u>	6/JR	Assu):					
			emperature:				- rence ∆P	•			ог. <u>9</u> ,3	08	
			3 NO 13			Com							
Postest	Leak Ra	le :	f ¹ @	_'hg	None							•	
			Crsat Lea										
Fyrite Da			Moisture (_		erse Sche	ematic:	*				
					g Sil. Gel								•
CO; 🖉		·		·	······	-				i <i>i</i>	landir.	· ~ (Ú.
		I Re	cord data even	v S i	minutes	-			Acid	SCUUM	her av	1. mu exit	Tem
	Sample	······		Pitol #:		TC #'s:	<u> </u>	<u></u>	1		,		Pump
#	Time	Time	Reading	ΔΡ			Probe	Slack	Tmin	Tm Out	Filter	Exit	Vac.
	 	 '			Linesio					1	Filler		
A - 1	v	1454	605,433	68	5.9	5.9	205			54	246		1 13
Z	5			,68		5,9	224		61	55	245		·
3	15	<u> </u>	618.24		+- <u></u>	59	231	93	64	56	245	41	13
ч	15	<u> </u>	624,6	,67		5.9	230		66	57	244		13
5	20 .	 '	670,89	.65		5.7	233		66		245	41	12
<u> </u> <u> </u> <u> </u>	<u>75</u> 30	├ ────'		-61 -52	5.4	5.4		94	67		245.		11
	35	'	643.25		· · · · · · · · · · · · · · · · · · ·	4,6	235	f	69		247		9
	,, 40		654.28	,42	3,1 3,7	3.9	251	96	71	60	242	<u> </u>	7.5
10	45		659,26	.36	3,2	3.2	228	94	51	63	241	40	6
1/	5 v	[]	664.02	.35	3,1	3,1	229	95	72	60	248	40	6
12	55	<u> </u>	663,74	.35	3,1	3,1	234	94	22	60	235	40	6
31	60	1600	673,434	.58	5.1	5,1	226	95	63	59	237	45	10
2 3	1:05 10	├ ────┘	679,40	.57	5,0	5,0	231	96 97	65	59	235	46.	10
7 4	75		635.30	.58 .58	51 5.1	5.1	<u>238</u> 241	97	50 17	60 60	235 233	49. 50	10
S	. 20	[]	697.15	• 58	5,1	5.1	229	97	70	61	232	39	10
6	25	7007		.57	5.1	5.1	230	98	5	61	248	38	10,5
7	80		708.985	,55	4.8	4.8	227	96	71	61	247	39	10 5
8	35	[]	714,825	,49	4.3	4.3	235	96	71	61	233	40	9 :
9	40	<u>↓</u> !	720.370	.48		4.2	239	96	-70	61	243	40	8.55
10	45	┢────┘	725.77	345	4,0	4,0	240	94	-70	60	239	40	8 5
<u> </u> 2	50 55	·	731.07	,29 ,38	3,4	3.4 3.3	236	93	<u>69</u> 68	59 58	239 239	39 42	<u>7 5</u> 7 Si
End	37 60	1700	736.0	170	2,7	7.7	CLO	- 12	00	ەد			<u> </u>
-1012												、 、	· · ·
the second se	V : 135	ue on av	g √ <u>ΔP: . 120</u> 7	avg ΔH: <u>l</u>	1.60 T.	.4419 T_	13.5	Calculate	d By :(26 (Checked B	ly :	
				• -	-			`			والمتحد والمتعاد		
											D'P.		

1

• .

.

[

ŕ

;: ::

Ĵ

FBT

		SAMPLE	RECOVERY	γ υλτά		
12-15 1: _WES)	TLAKE C	A \$ 0		PN:	*	
tion: ^{H5} FUN	NE SCRUBE	ER Tou	ER			
Füter N	No: N.A.	Glasswarc	Sct No:	l Sampl	e Box No:	_1
		IMP	INGER DAT	ί Λ		
	G	ravimetric:		T ic:	· .	
	<i>ii</i> 1	#2	#3	:: -4	#5	Total
Contents	100ML ICL	100ML ICL	IOOML ELL	MT	50	
Final	670	695	592	573	971	
Initial	565	661	587	57z	948	
Net	105	34	5	1	23	1.68
	· · · · · · · · · · · · · · · · · · ·	RECO	VERED SAN	APLE		·
Descripti	on of Particulat	e on Filter:	N.A.			
		ſ Silica Gel:	blue		\sim	N
	Reco	overed By:) Robe	and the second se		
		Date:	12/15/0	18		
		Ň			``	
		λ, Υ			、 、	
		`\`` \`` \	·			
				• •	、 、 、 、	
			·		х , х	

.

• • • • م

ſ

Ì

[

ſ

ſ

...

ĺ

Ĉ

[]

APPENDIX D

- .

. [

4

F

ŕ

ſ

ľ

[____]

Ĺ

[]

P.24

SAMPLING SITE DATA

Traverse Point Locator Data

Client Westlake CA & O
Calculator Chris Go Hschalle Date 11/29/98
Location <u>Hy fume scrubber Stack</u>
Distance from upstream disturbance(d) 50" (3.6 de)
Distance from downstream disturbance(u) 12° (0.9 de)
Outside of port to far side of stack(a)
Outside of port to near side of stack(b) $0.25''$
Inside Stack Diameter(a-b)

1

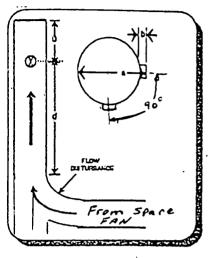
Γ

Γ

-- --

L =

1.


[

Ì

[]

·

Ĵ

2.5

	See f	igure 4.	١	
Point #	% from wall to point	" from wall to point(c)	Port length(b)	" from probe tip to point(b+c)
1	7.1	0.2000,5	0.25	0.75
2	6,7	.९५	1	1.19
3	11,8	1,65		1.90
4	7.7	< 7.4 ŝ		2.73 '
5	25.	3.55		3,75
6	35.6	4.93		5,23
· 7	64,4	9.02	(9.27
8	75.0	10:50)	10.75
9	82.3	11.52		11.77
10	88.2	12:35		12.60
10	93.3	13.06	.)	13.31
12	97.9 >	13773.5	+	13.75
		. \		
		N. C.		
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
	<u> </u>		. <u> </u>	<u></u>

APPENDIX E

1.

<u>[</u>`

,____

,**--** .

[

ſ.

–

i

L

Ĺ

ĺ

CALIBRATION DATA

FBT

<u>P.26</u>

APPENDIX E CALIBRATION DATA

This appendix contains test equipment calibration documentation and describes the specific QA/QC procedures employed by FBT in performing this test. The goal of the QA/QC activities for this project was to ensure, to the highest degree possible, the accuracy of the data collected. The procedures contained in the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume 1. Principles, EPA-600 9-76-005, and Volume 111. Stationary Sources Specific Methods, EPA-600 77-027b were the basis for performance for all testing and related work activities.

CALIBRATION OF APPARATUS

The preparation and calibration of source sampling equipment is essential in maintaining data quality. Brief descriptions of the calibration procedures used by FBT follow:

Barometers

1

FBT uses aneroid barometers, which are calibrated against a National Weather Service-type mercurial barometer.

Temperature Sensors

Bimetallic dial thermometers and Type "K" thermocouples are calibrated using the procedure described in Section 3.4.2 of the Quality Assurance Handbook. Each temperature sensor is calibrated over the expected range of use against an ASTM 3C or 3F thermometer.

Pitot Tubes

FBT uses Type "S" pitot tubes constructed according to USEPA Reference Method 2 specifications. Pitot tubes meeting these criteria are assigned a baseline coefficient of 0.84 and need not be calibrated.

Differential Pressure Gauges

FBT uses Dwyer inclined/vertical manometers to measure differential pressures. These include velocity pressures, static pressures, and orifice pressure differentials. Manometers are selected with sufficient sensitivity to accurately measure pressures over the entire range of expected values. Manometers are leveled and zeroed prior to each run and checked periodically during the run. Manometers are primary standards and require no calibration.

Dry Gas Meters and Orifices

Dry gas meters and orifices are calibrated in accordance with Section 3.3.2 of the Quality Assurance Handbook. This procedure involves direct comparison of the dry gas meter to a reference wet test meter. The reference wet test meter is routinely calibrated against a bell prover. Before its initial use in the field, the metering system is calibrated over the entire range

of operation. After each field use, the metering system calibration is checked at a single intermediate flow rate based on the previous field test. Acceptable variation for the average initial and final dry gas meter factor is 5%. Acceptable variation from the mean of individual meter and orifice calibration factors for a check is ± 0.02 .

ON-SITE MEASUREMENTS

On-site QA/QC activities included:

Measurement Sites

Í

Prior to sampling, all stack/duct dimensions are measured to determine measurement site locations, location of test ports, and stack inside dimensions. Inside dimensions were checked through all available test ports to ensure uniformity of the stack cross-sectional area.

Verification of Absence of Cyclonic Flow

In situations where the measurement site is near possible flow disturbances, the presence or absence of cyclonic flow must be determined. If required, **FBT** conducts an evaluation of the measurement sites to determine the presence or absence of cyclonic flow prior to testing. Acceptable criteria per USEPA Method 1 is an average angle of rotation required to achieve a null pitot reading of less than 20°.

Velocity Measurements

All velocity measurement apparatus was assembled, leveled, zeroed, and leak checked prior to each test run. The static pressure was determined at a single point near the center of the stack.

Flue Gas Component Sampling

During test runs gas samples were withdrawn from a single point near the center of each test site and analyzed with a Fyrite Gas Analyzer to determine percent concentrations of carbon dioxide and oxygen. The sample train was assembled and leak checked before sampling.

Moisture

The sample trains were assembled, equilibrated to required temperatures, and leak checked before testing. During sampling, the gas exiting the condenser was maintained below 68°F to ensure complete condensation of the stack gas water vapor. At the conclusion of each test run, the sample trains were leak checked at the highest vacuum attained during the test run. Acceptable leakage rates are 0.02 cfm or 4 percent of the average sampling rate (whichever is less).

FBT

Thermocouple Calibration Data Westlake CA &O Hg Fume Scrubber Stack Emissions Evaluation December 15, 1998

ł

Ţ

. .

1

; , .

			,		
		Ambient	Ice Water	Boiling Water	Hot Oil
%Diff	erence	1.1%	3.1%	0.5%	0.2%
Reference #	Mercury	88	32	208	428
Sensor #	SS-60-4	87	31	209	429
Date:	6/25/98	Stack gas	temperature		
Average %	Difference	0.8%	·		
		Ambient	Ice Water	Boiling Water	Hot Oil
%Diff	erence	2.3%	3.0%	0.0%	0.5%
Reference #	Mercury	86	33	208	422
Sensor #	Apex HB-1	84	32	208	420
Date:	6/25/98	Filter over	temperatur	e	
Average %	Difference	2.7%			
%Diff	erence	Ambient 2.3%	Ice Water 3.0%	Boiling Water 0.5%	Hot Oil #N/A
Reference #	Mercury	88	33	208	
Sensor #	Apex in	86	32	209	
Date:	6/25/98	Drv gas m	eter inlet ter	nperature	
Average %	Difference	2.7%			
		Ambient	Ice Water	Boiling Water	Hot Oil
%Diff	erence	1.1%	3.0%	0.0%	#N/A
Reference #	Mercury	88	33	208	
Sensor #	Apex-out	87	32	208	
Date:	6/25/98	Dry gas m	eter outlet t	emperature	
Average %	6 Difference	2.1%			
		Ambient	Ice Water	Boiling Water	Hot Oil
%Diff	erence	1.2%	3.0%	0.0%	#N/A
Reference #	Mercury	86	33	207	
Sensor #	DC-1	87	32	> 207	
Date:	6/25/98	Silica gel	colume exit	temperature	
Average %	6 Difference	2.1%			
		Ambient	Ice Water	Boiling Water	Hot Oil
	erence	1.1%	3.0%	0.5%	#N/A
Reference #	Mercury	87	33	206 \	
Sensor #	DC-2	86	32	207	
Date:	6/25/98	Silica gel	colume exit	temperature	
Average %	6 Difference	2.1%			
		Ambient	Ice Water	Boiling Water	Hot Oj
%Diff	ie <u>rence</u>	4.5%	3.0%	0.5%	#N/A
Reference #	Mercury	88	33	206	
Soncor #		84	32	207	

DC-3 84 32 Sensor # 6/11/98 Silica gel colume exit temperature Date: Average % Difference 1.8%

207

, `

P.29

POST-TEST METER CALIBRATION

l

r---;

- --

1 ł

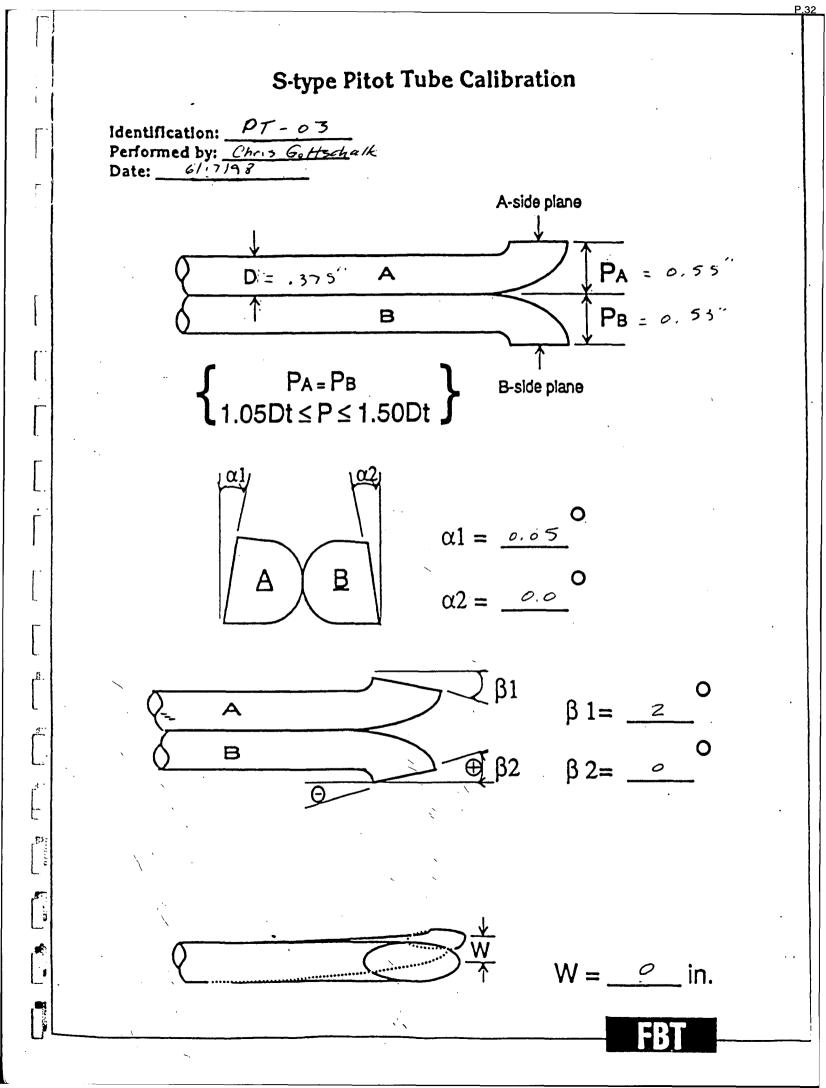
L . .

[]

Ĺ

Ċ

	12/21/98 Westlake CA	BAROMETRIC PRESS DGM PRETEST γ &Ο REFERENCE γ _r	1.037	-
	<u>RUN 1</u>	<u>RUN 2</u>	<u>RUN 3</u>	
VACUUM ("Hg)	13.00	13.00	13.00	
ن4("H2O) ئ	4.60	4.60	4.40	
Initial Ref. ft ³	505.261	517.611	529.954	
	517,411	529.754	541.741	
Initial DGM ft ³	753.826	765.197	776.578	
Final DGM ft ³	765.197	776.578	787.668	
Ref Tw ^o F	60.0	60.0	60.0	
DGM Tm °F	65.0	68.0	69.0	
Time (min.)	10.0	10.0	10.0	
	******			*******
Net Reference, Vw (ft ³) =	12.150	12.143	11.787	
Net DGM. Vd (ft ³)=	11.371	11.381	11.090	
γ =	1.069	1.073	1.072	
Δ H@ =	1.697	1.689	1.712	
*****	******	******		*****
	Pretest $\gamma =$	1.037		
	New $\gamma =$	1.071		
	% Δ =	3.3		`
Ave	rage $\Delta H@ =$	1.699		. .
<u>Calculations:</u> γ = (Vw x γ _r x Pb x (Tm +	460)) / (Vd (F	Pb + (AHd / 13.6)) x (Tw + 460)		
∧H@ = 0.0317 x ∧H / (P	b (Td + 460))	x ((Tw + 460) x time / Vw) ²		× .
COMMENTS	:	· · · · · ·		
		() ,)		Ы


POST-TEST METER CALIBRATION

	10/25/98 Polar Mineral		BAROMETRIC F DGM PRET REFERE	EST γ : 1.037	in.hg DGM#1
	<u>RUN 1</u>		<u>RUN 2</u>	<u>RUN 3</u>	
VACUUM ("Hg)	12.00		12.00	12.00	
	2.40		2.40	2.40	
					·
Initial Ref. ft ³	467.115		476.158	482.435	
Final Ref. ft ³	476.066		482.435	492.238	
Initial DGM ft ³	862.917		871.436	877.356	
Final DGM ft ³	871.520		877.356	886.667	
Ref Tw ⁰F	69.0		69.0	70.0	
DGM Tm [°] F	78.0		77.0	79.0	
Time (min.)	10.0		7.0	× 11.0	
••••••		·***********			**********
Net Reference, Vw (ft ³) =	8.951		6.277	9.803	
Net DGM. Vd (ft ³)=	8.603		5.920	9.311	
γ =	1.054		1.072	1.067	
∆ H@ `=	1.634		1.631	1.651	
*********	*****	*****	************	******	*********
. 1	Pretest $\gamma =$ New $\gamma =$	1.037			
	$\delta \Delta =$	1.064 2.6			
Ň		2.0		`	
Aver	àge ∆H@ =	1.639		N	
<u>Calculations:</u> γ = (Vw x γ _r x Pb x (Tm + 4	460)) / (Vd (P	'b + (∧Hd / 1	3.6)) x (Tw + 46	0)	
∆H@ = 0.0317 x ∆H / (Pb	(Td + 460)) :	x ((Tw + 460)) x time / Vw) ²		
COMMENTS:					
, I				,	FBI

~

ſ <u>, ...</u> ſ. : Ō

, 1 .

APPENDIX F

Ι.

ŕ

Ĺ

Ĺ

Ĺ

[

P.33

ANALYTICAL DATA

. . . .

· • • •

Submitted To: Chris Gottschalk FBT Testing & Environmental Services 6860 Stonepoint Court Paducah, KY 42039

Reference Data: Sample Location: Westlake CA & O Hg Fume Scrubber / 461 Sample Type: Water Client Sample No.: 461C-1 through 461C-5 461-2 PO #: Method Reference: EPA 101 Sample Set ID#: 98-S-8314 98-49200 through 98-49204 DATACHEM Lab No.: 01/04/99 Preparation Date:

Analysis Date: 01/04/99 The samples were prepared and analyzed in accordance with EPA

method 101 using a Varian SpectrAA 300 (AAS).

The results are in the enclosed data table.

Stephanie Wilcox Analyst

Reviewer

SALT LINE OF OFFICE 960 WEST LAVOY ORIVE SALT LAKE OFFICIAN BAI23-2447 401 058-7700, FAX 301 068-9992

3° 1

s

5.

CINCINNAT: OFFICE 4388 GLENDALS-MILFORD ROAD CINCINNAT: OHIO 43242-3708 513 733-5388 PAX 315 783-3747 MAAVLAND OFFICE 17824 MACOUFF AVENUE DUITH MARMAND 2000 201 3241087 FAX 001 3241981

LEADING ANALYTICAL CHEMISTRY INTO THE 21ST CENTURY!

98-5-8314

P.35

Results

μ g/Sample

Client #		DCL #	Ħg
461C-1	Runi	98-49200	360.0
461C-2.	Runz	98-49201	360.0
461C-3	Run 3	98-49202	340.0
461C-4	ILI Blan	K 98-49203	ND
4610-5	DI HZO	Blank 98-49204	ND
LOD			5.0
	yalue i	is below the limit of (

tophine Willrup

Stephanie Wilcox Analyst

Ē

Ľ

Ē

Í

Υ.

Reviewer

	F	IN OI) CHA		-	LYTICAL	ANA
			91-5	- - -	CUST		
	n Ed Slice	Y: A+1'-	ORATORY	1			BT Engineering
\$	milford Rd szuz	endale. , DH 4	a ta C. 388 Gle. ncinnati,) (302) 898-8782	60 Stonepoint Cour ducab, Kentucky 4 02) 898-8782 Fa
٦		ECTNAME & NUM		1	SAMPLE	OF SAMPLES	DATE SHIPPED
	Hg frme	,	estlake (1.901	5 CONTACT PERSON	12/16/48 POP
						Chris Gottschalk	461-2
	SAMPLE RETURN	ГТҮ	PRIORIT	mple	guires up of sa	INSTRUCTIONS: gulation ve ithin 30 da	OMMENTS/SPECIA Federal +
	YILS NU	I ENERG RUSTI	DEMAI. RUELI		, 99,	jam 14,19	date, or b
	TED	PFOUFS'	ALYSES R		ONTAINER		
		-			SCRIPTION	MPLE DATE DE	AMPLE # S.
1	d Hg	me an	iz Wolder	195 ×	(م 1939 م م ناماد م م م م	115/98 1	
-		0		Conce	Jar/20	19700	
R		٠.	•		'' de c	9201	alc.
R		11	1		rest and the second	9202	
B		, · · ·	1		·· / c×	9207	
T, H		1		ч	stic Jo -	2 204 Pla	4
- 3					· · · · · · · · · · · · · · · · · · ·		
	•				. \		
	<u> </u>						
لسميد			QUEST	DDY R	OF CUST		
	HER	OTH	COURIER	EX/UPS		VERED BY: U.S. M	SAMPLES DEL
-	IVED BY: (ATURE)	RECEI	BY:	LINQUISI (SIGNATI	TODY R	URPOSE FOR CUS CHANGE	DATE
1						LAAIUR	

ŧ , . ,--; [. i

[

APPENDIX G

و مسر و

PROCESS DATA

P.38

WESTLAKE CA&O CORPORATION Mercury Fume Scrubber Stack Test Parameters Date: 12/15/98

Run 1:	Start Time:	0850	End Time:	1058		·		
Time	рН		ORP			Water Flow		Inlet Air Temp.
		Reading	Conversion	(mV)	Reading	Conversion	(gpm)	(*F)
0900	8.70	19	x 10 + 400	590	35	+ 250 x 20	2.80	92
0915	8.70	19	x 10 + 400	590	35	+ 250 x 20	2.80	92
0930	8.80	18	x 10 + 400	580	35	+ 250 x 20	2.80	93
0950	8.80	18	x 10 + 400	580	35	+ 250 × 20	2.80	95
1000	9.00	17	x 10 + 400	570	90	+ 250 × 20	7.20	95
1015	9.00	17	x 10 + 400	570	38	÷ 250 x 20	3.04	96
1030	8.90	16	x 10 + 400	560	35	+ 250 × 20	2.80	96
1045	9.00	15	x 10 + 400	550	42	+ 250 x 20	3.36	96

Run 2:	Start Time:	1148	End Time: 1	1355				
Time	pH	[ORP			Water Flow		Inlet Air Temp
		Reading	Conversion	(mV)	Reading	Conversion	(gpm)	(°F)
1200	9.00	14	x 10 + 400	540	55	+ 250 x 20	4.40	100
1215	8.95	14	x 10 + 400	540	48	÷ 250 x 20	3.84	100
1230	8.90	14	x 10 + 400	540	47	÷ 250 x 20	3.76	100
1245	8.90	14	x 10 + 400	540	52	+ 250 x 20	4,16	100
1300	8.90	14	x 10 + 400	540	50	+ 250 x 20	4.00	100
1315	8.85	14	x 10 + 400	540	47	+ 250 x 20	3.76	100
1330	8.85	14	x 10 + 400	540	47	+ 250 x 20	3.76	100
1345	8.90	15	x 10 + 400	550	50	+ 250 x 20	4.00	100
1355	8.85	15	x 10 + 400	550	50	÷ 250 x 20	4.00	100

Run 3:

Ĺ.

2

End Time: 1700

Times 1454

C

Time	рH	ORP				Water Flow		
		Reading	Conversion	(mV)	Reading	Conversion	(gpm)	(°F)
1500	8.85	14	x 10 + 400	540	45	+ 250 x 20	3.60	100
1520	8.90	14	x 10 + 400	540	50	+ 250 x 20	4.00	100
1530	8.90	13	x 10 + 400	530	50	+ 250 x 20	4.00	100
1545	8.95	13	x 10 + 400	530	48	+ 250 x 20	3.84	100
1600	8.95	13	x 10 + 400	530	52	+ 250 x 20	4.16	100
1615	8.90	13	x 10 + 400	530	53	+ 250 x 20	4.24	100
1630	9.00	13	x 10 + 400	530	50	+ 250 x 20	4.00	100
1645	9.00	13	x 10 + 400	530	50	+ 250 x 20	4.00	100

pH		ORP	Water Flow	inlet Gas Temp.
(SU)		(mV)	(gpm)	(°F)
6 Hour Avg. 8.90	14.92	549.20 47.56	3.80	98.20

, N

APPENDIX H

<u>[</u>]

MERCURY SAMPLING DATA AND RESULTS

FBT

CLIENT/PROJECT #: PROCESS: SAMPLE LOCATION: DATE: TIME: RUN #:	Westlake CA & O/461 Chlor Alkali Plant Hg Fume Scrubber Stack 12/15/98 0847-1055 hrs 1			
STATIC PRESSURE("H ₂ O):	-0.24	Ps	30.02	"Hg
BAROMETRIC("HG):	30.04			-
SAMPLE TIME(min)	120 0	Vm(corr)	126 467	ft ³
MOIST. SAMPLE VOLUME(ft ³):	126.467	Sample, Vm(std)	137.625	dscf
AVG. SQ. ROOT DELTA P:	0.6959			
AVG ORIFICE DELTA H:	4.238			
AVG STACK TEMP °F:	87.8		547.8	°R
AVG METER TEMP °F:	50.4			
Cp PITOT :	0.84			
NOZZLE DIA. (inches):	0.313	An	5.34E-04	ft ²
METER GAMMA:	1.037			
LEAK RATE(0 IF<0.02):	0			_
CIRC STACK? 1=Y,0=N:	1	As	1 07	ft ²
DIA (in) IF 1 or AREA (in ²) IF 0:	14.00			
% O ₂ :	22.00	Dry Mole Wt	29.04	
% CO ₂ :	1.00	Stack Mole Wt	28.53	
CONDENSATE(g):	142	% H ₂ 0	4.63	
ANALYTE # 1:	Mercury			
MOLECULAR WEIGHT:	200.6			
micrograms Hg/sample: PPM in stack gas:	360.0			

.

ł

[

ì

l...

Ű

Ĺ

Ĉ

.

P.40

Stack Gas Conditions

	20.07	A 1			
VELOCITY (Vs):	39.97	ft/sec			
VOLUMETRIC FLOW RATE(Qs):	2,563	acfm			
:	2,364	dscfm			
TEMPERATURE :	88 <	۴F			
% H ₂ O:	4.6	%			
% O ₂	22.0	%			
∽ % CO ₂ :	1.0	%			
×					
% ISOKINETIC:	97.1	`%			
	Moroun, Emissione				
	Mercury Emissions				

CONCENTRATION (Cs):	5.77E-09	lb/dscf
	2.62E-06	grams/dscf
EMISSION RATE (Er):	0.0008183	lb/hr
	8.906	grams/day
COMMENTS:		

1)

CLIENT/PROJECT #: PROCESS: SAMPLE LOCATION: DATE: TIME: RUN.#:	Westlake CA & O/461 Chlor Alkali Plant Hg Fume Scrubber Stack 12/15/98 1148-1354 hrs 2			
STATIC PRESSURE("H2O):	-0.02	Ps	30.04	"Hg
BAROMETRIC("HG):	30.04			
SAMPLE TIME(min)	120 0	Vm(corr)	132 373	ft ³
MOIST. SAMPLE VOLUME(ft ³):	132.373	Sample, Vm(std)	142.026	dscf
AVG. SQ. ROOT DELTA P:	0.7119			
AVG ORIFICE DELTA H:	4.492			
AVG STACK TEMP °F:	91.6		551.6	٩R
AVG METER TEMP °F:	58.0			
Cp PITOT :	0.84			
NOZZLE DIA.(inches);	0.313	An	5.34E-04	ft ²
METER GAMMA:	1.037			
LEAK RATE(0 IF<0.02):	· 0			•
CIRC STACK? 1=Y.0=N:	1	As	1 07	ft ⁴
DIA (in) IF 1 or AREA (in ²) IF 0:	14.00			
% O ₂ :	23.00	Dry Mole Wt	29.00	
% CO ₂ :	0.50	Stack Mole Wt	28.47	
CONDENSATE(g):	153	% H ₂ 0	4.83	
ANALYTE # 1:	Mercury			
MOLECULAR WEIGHT:	200.6			
micrograms Hg/sample: PPM in stack gas:	360.0			

,

1

ŀ

Ë.

Ĺ

÷

.

Stack Gas Conditions

VELOCITY (Vs): VOLUMETRIC FLOW RATE(Qs):		41.06 2,634	ft/sec acfm
		2,409	dscfm
TEMPERATURE :		92	۴F
% H ₂ O:		4.8	%
% O ₂ :		23.0	%
% CO ₂ :		0.5	%
% ISOKINETIC:	X	98.4	%

Mercury Emissions

CONCENTRATION (Cs):		5.59E-09	lb/dscf
:	•	2.53E-06	grams/dscf
EMISSION RATE (Er):		0.0008077	lb/hr
	1	8.792	grams/day
COMMENTS:			

1

•

.

-

~

CLIENT/PROJECT #: PROCESS: SAMPLE LOCATION: DATE: TIME: RUN #:	Westlake CA & O/461 Chlor Alkali Plant Hg Fume Scrubber Stack 12/15/98 1454-1700 hrs 3			
STATIC PRESSURE("H ₂ O):	-0.24	Ps	30.02	'Hg
BAROMETRIC("HG):	30.04			
SAMPLE TIME(min):	120.0	`Vm(∞rr)	135.400	H3
MOIST. SAMPLE VOLUME(#3):	135.400	Sample, Vm(std)	143.79,1	dscf
AVG. SQ. ROOT DELTA P:	0.7207			
AVG ORIFICE DELTA H:	4.617			
AVG STACK TEMP °F:	94.9		554,9	۹
AVG METER TEMP *F:	63.5			
Cp PITOT :	0.84			
NOZZLE DIA.(inches):	0.313	An	5.34E-04	tt ²
METER GAMMA:	1.037			
LEAK RATE(0 IF<0.02):	0			
CIRC STACK? 1=Y.0=N:	1	As	1.07	ft ²
DIA (in) IF 1 or AREA (in ²) IF 0:	14.00			
% O ₂ :	22.00	Dry Mole Wt	28.93	
% CO ₂ :	0.30	Stack Mole Wt	28.36	
CONDENSATE(g):	168	% H₂0	5.21	
ANALYTE # 1:	Mercury			
MOLECULAR WEIGHT:	200.6			
micrograms Hg/sample: PPM in stack gas:	340.0			

1

:

1

-

l

l

L

`,

Ν

.

~

.

CALCULATED RESULTS

Stack Gas Conditions

VELOCITY (Vs):	41.78	fVsec
VOLUMETRIC FLOW RATE(Qs):	2.680	acfm
:	2.425	dscfm
TEMPERATURE :	95	۶۴
% H ₂ O:	5.2	%
% O ₂ :	22.0	%
% CO ₂ :	0.3	%
% ISOKINETIC:	98.9	%

Mercury Emissions

,

CONCENTRATION (Cs):	5.21E-09	lb/dscf
•	2.36E-06 🔨	grams/dscf
EMISSION RATE (Er):	0.0007587	ib/hr
,	8.258	grams/day
COMMENTS:		